This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

REDOX DISSOCIATION OF MELTED TETRAPHOSPHORUS DECASULFIDE

M. C. Demarcq^a

^a Produits Chimiques UGINE KUHLMANN, Centre de Recherches de Lyon, Pierre, Bénite

To cite this Article Demarcq, M. C.(1981) 'REDOX DISSOCIATION OF MELTED TETRAPHOSPHORUS DECASULFIDE', Phosphorus, Sulfur, and Silicon and the Related Elements, 11:1,65-69

To link to this Article: DOI: 10.1080/03086648108077404 URL: http://dx.doi.org/10.1080/03086648108077404

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REDOX DISSOCIATION OF MELTED TETRAPHOSPHORUS DECASULFIDE†

M. C. DEMARCQ

Produits Chimiques UGINE KUHLMANN, Centre de Recherches de Lyon, F 69310 Pierre-Bénite

(Received January 6, 1981)

 P_4S_{10} suffers a fast oxido-reductive dissociation when melted, losing one of its four terminal S atoms to yield P_4S_9 , which is characterized by nmr, ir and Raman spectroscopy. This dissociated state is largely retained in the cooled melts, which appear to be made up of unaltered P_4S_{10} crystals embedded in an amorphous matrix containing the dissociation products; such melts give rise easily to supersaturated solutions in CS_2 , from which crystals of pure P_4S_9 —form I separate on standing.

The same holds true for commercial " P_2S_5 ," for which a definite positive correlation was found between the P and P_4S_9 contents.

Examples of redox dissociation of other P/S compounds are quoted for the sake of comparison.

INTRODUCTION

It has long been known, since the pioneer work by Stock, that the vapor of P_4S_{10} dissociates at much lower temperatures than that of P_4S_3 and P_4S_7 ; at 600°C, not much above its normal boiling point, the mean molecular weight of P_4S_{10} is roughly halved and this lead Stock to the conclusion that P_4S_{10} vapor was wholly dissociated into P_2S_5 . This statement remained prevalent until Raman studies recently showed that the vapor phase dissociation of this sulfide went actually with the loss of sulfur; 2,3 Eq. (1) 3 and (2) 4 have been claimed to describe this phenomenon:

$$P_4S_{10} \xrightarrow{426-680^{\circ}C} P_4S_7 + 3/n (S_n)$$
 (1)

$$P_4S_{10} \xrightarrow{527-927^{\circ}C} P_4S_5 + 5/2 (S_n)$$
 (2)

RESULTS

We now report that P_4S_{10} is already dissociated in the liquid state and that this dissociation is largely retained in the cooled solid.

Simple evidence is as follows: if pure P_4S_{10} is twice melted and cooled in a differential scanning calorimeter, the second melting happens at 8° lower than the first one. Likewise, a fusion enthalpy of 11.37 Kcal/mole was found for P_4S_{10} at the first

[†] Presented in part at the International Conference on Phosphorus Chemistry, Halle (GDR), September 17-21, 1979.

TABLE I
Vapor pressure (mm Hg) vs temperature (K)

P sulfide	log p	p at 561 K ^a	
solid P ₄ S ₁₀ same, after melting at 320°C	-7547/T + 12.09	0.043 ^b	
and cooling	-8714/T + 15.55	1.04 ^b	
liquid P ₄ S ₁₀ 5	-4660/T + 8.8	3.11°	
solid P ₄ S ₉	-7630/T + 12.76	0.144 ^b	

amp of pure P₄S₁₀.

melting but only 8.23 at the remelting. Vapor pressure data point to the same conclusion (Table I): when reaching the mp, solid P_4S_{10} displays a sudden increase in p, which is largely kept after cooling.

We further established that the dissociation of liquid P_4S_{10} involves the loss of one of its four terminal S atoms and the formation of P_4S_9 (Eq. 3)

 P_4S_9 can be characterized by several spectral methods.

Thus, ³¹P nmr spectra of P_4S_{10} melts, dissolved in CS_2 , were found to be the mere superimposition of those of P_4S_{10} (an A_4 system with δ , 56.3) and P_4S_9 (an AB_3 system with δ (A), 57.3; δ (B), 62.9, ²J_{AB} 96 Hz).

Likewise, ir spectra in solution display only the specific absorption bands of both sulfides, viz., in cm⁻¹, 533 (s) and 692 (s) for P_4S_{10} and 492 (m), 547 (s), 695 (s) and 715 (w) for P_4S_9 ; absorption at 547 cm⁻¹ was found to obey the BEER law within limits, thus providing a convenient means to determine P_4S_9 in such mixtures.

The ir bands of P_4S_9 at 492 and 547 cm⁻¹ are still visible, although broadened, in the solid spectra (KBr mulls) of neat melts of P_4S_{10} ; this confirms that P_4S_9 does actually exist as such in the latter and not only in their CS_2 solutions. This is further substantiated by solid Raman spectroscopy,^{7,8} with the strongest specific frequencies of P_4S_9 showing at 309 and 389 cm⁻¹.‡

All these methods point to P_4S_9 being the only new P sulfide produced, at least at not too high temperatures. Surprisingly, only crystalline P_4S_{10} is visible however, by

^b Extrapolated from the solid side.

^cExtrapolated from the liquid side.

[‡] Similar frequencies (304 and 381 cm⁻¹) have been observed also by Gardner² in the Raman spectrum of liquid P₄S₁₀.

 $TABLE \ II$ Heating experiments on pure P_4S_{10}

Heating temperature, °C	Heating time mn	Cooling	P ₄ S ₉ in cooled sulfide, ^a %
300	<1	in liquid N ₂	16
314	120	ibid	33
394	10	ibid	30
320	ca 5	air cooled	29
250	240	ibid	nil
250 ^b	240	ibid	36

[&]quot;ir method.

X rays or tda, in solidified melts of P_4S_{10} ; but, if these are briefly shaken with CS_2 , the solution at once filtrated, then allowed to stand overnight at the same temperature, crystals of pure P_4S_9 -form I^9 are obtained (ca 4% of the initial P_4S_{10}). A conclusion follows: cooled melts of P_4S_{10} contain unchanged P_4S_{10} that is mainly crystallized and P_4S_9 , that is amorphous and consequently gives rise easily to supersaturated solutions.

As shown in Table II, the amount of P₄S₉ is already substantial after a matter of seconds just above the mp (288°C); it changes little with the cooling rate or on storage at r.t.; however, annealing causes it to decrease (Figure 1). Likewise, CS₂ solu-

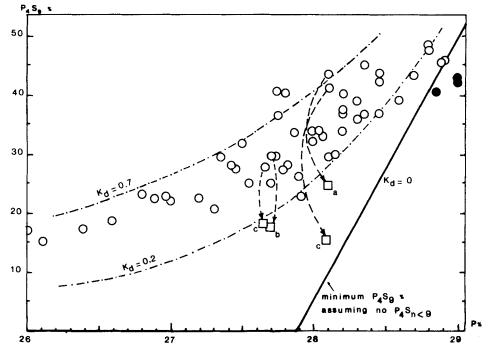


FIGURE 1 P_4S_9 vs P contents for commercial phosphorus pentasulfide of various origins. Open circles: normal specimens; black circles: anomalous ones (contain crystallized P_4S_9 as evidenced by tda and X rays); open squares: annealed, 1 h at 220°C (a), 1 h at 250°C (b) or 16 h at 250°C (c). K_d (see text) is in moles.kg⁻¹.

^b Dissolved in 10 parts trichlorobenzene (mixed isomers).

tions remain stable for days, but evaporation, even in vacuo, causes the P_4S_9 content to regress.

All that has been said about fused P_4S_{10} holds true, without exception, for commercial phosphorus "pentasulfides," inasmuch as the latter, either distilled or not, are always in fine chilled from the liquid state. Schematically, commercial " P_2S_5 " can be viewed as a conglomerate of crystallized P_4S_{10} with an amorphous phase containing much P_4S_9 and "free" sulfur. A plot of the P_4S_9 % vs the P % is shown in Figure 1 for samples of commercial P_2S_5 of various origins; as expected, there is an obvious tendency for both parameters to run parallel. P_4S_7 was found absent up to P contents of at least 29% as indicated by the nmr. ¹⁰

As n in Eq. 3 is unknown, a conventional dissociation constant

$$K_d = [P_4S_9][S]/[P_4S_{10}]$$

was derived; results in Table II and Figure 1 are consistent with $K_d = 0.2$ to 0.7 moles.Kg⁻¹, at temperatures around 300–320°C.

DISCUSSION

Propensity for the transfer of S atoms appears to be customary with P sulfides; redox disproportionations have been already reported for P_4S_2 , P_4S_4 , P_4S_5 and P_4S_9 .^{2,11}† The case of P_4S_{10} is unique in that cleavage of $P_{=}S$ bonds can be balanced only by formation of S—S bonds (probably S_n molecules). Similar reactions take place also with other Z_3PS compounds, with Z = SR, Cl, Br, $^{13-17}$ as well as for As_2S_3 :¹²

 $(RS)_3PS + P_4S_{10} \xrightarrow{>175^{\circ}C}$ reorganized (poly)thiophosphates + $(RS)_3P + R_2S$

$$+ R_2S_2; \ddagger Ref.^{13}$$
 (4)

$$(C_2H_5S)_3 PS \xrightarrow{120-130^{\circ}C} (C_2H_5S)_3P + 1/n (S_n); Ref.$$
 (5)

$$Cl_3PS + CH_3 - CH_2 - CH_3 \xrightarrow{280^{\circ}C} PrP(S)Cl_2 + HCl (+ PCl_3); Ref.$$
 (6)

$$Cl_3PS + 3/2 (RS)_2Pb \longrightarrow (RS)_3PS + 3/2 PbCl_2(+ PCl_3 + R_2S_2); Ref.$$
 (7)

$$Br_3PS \xrightarrow{212^{\circ}C} Br_3P + 1/n (S_n); Ref.$$
 (8)

A moderate driving force for reactions 3 to 8 could be a π or σ delocalization of the new-born lone pair on P into the empty d orbitals of the substituent heteroatoms.

The mechanism of reaction (3) and the fate of the lost sulfur will be discussed separately.

[†] According to our own results, P_4S_7 appears to melt undissociated (no change of mp), in line with its relatively high mp and bp (resp. 308 and 529°C compared to 288 and 513-5°C for P_4S_{10}).

[‡] The formation of R_2S_2 and R_2S_2 was not proved by Maier *et al*. We have repeated some of their experiments and were able to fully characterize by glc/ms the disulfide Ph_2S_2 in the thermal dissociation products of $(PhS)_3PS$ and both Ph_2S and Ph_2S_2 in those of $(PhS-PS_2)_2$.

EXPERIMENTAL (coworkers: P. Bourcier, B. Blanchon, C. Guillaud, P. Chanfrey)

 P_4S_{10} and P_4S_9 were recrystallized from pure dry CS_2 until pure and checked by ir, tda, nmr, X rays and elemental analysis.

Heating experiments on P₄S₁₀ (Table II) were performed in vacuum sealed quartz tubes.

tda and dsc diagrams were recorded at a heating rate of 20°/mn in a DU PONT 900 thermal analyzer. Fusion enthalpies were measured with a Triflux microcalorimeter of the Thermoanalyse Company; found (Kcal/mole), for P₄S₁₀ (1st melting): 11.3, 11.4, 11.42 (mean value 11.37); (2nd melting): 8.1, 8.3, 8.3 (mean value 8.23); for P₄S₉ (1st melting): 8.0; (2nd melting): 6.9.

Vapor pressures were determined on degassed specimens by a tga method¹⁸ using a Ugine Eyraud B 60 thermobalance.

nmr spectra were obtained at 40.5 MHz with a Varian XL 100-15 or at 80.76 Hz with a Jeol JNM-FX 200; + shifts are downfield from 85% H₃PO₄. ir spectra were recorded with a Perkin Elmer 577 grating spectrometer. The P₄S₉ contents were found, with a relative error of ca 5%, by means of the equation:

$$P_4S_9 \% = 456 \text{ A}$$

with A = absorbance at 547 cm⁻¹ for a 2.5 g/l solution in CS_2 , using 0.5 mm KBr cells (all spectra compensated for the solvent).

Raman spectra were recorded on a Dilor RTI triple monochromator system with a Spectra Physics 164 Ar' laser (50 mV at 5165 Å).

ACKNOWLEDGMENTS

The author thanks his colleagues R. Barral and J. J. Barieux for their help and advice and the DILOR Company for the recording of Raman spectra.

REFERENCES

- 1. A. Stock and Von Bezold, Ber. Bunsenges. Phys. Chem., 41, 657 (1908).
- 2. M. Gardner, J. Chem. Soc., Dalton Trans., 691 (1973).
- 3. J. Bouix, R. Hillel, H. Vincent and Y. Monteil, J. Therm. Analysis, 12, 371 (1977).
- 4. E. A. Kukushkina, G. P. Dudchik, O. G. Polyachenock and G. I. Novikov, Zh. Fiz. Khim., 48, 1885 (1974).
- 5. R. Förthmann and A. Schneider, Z. Phys. Chem., Neue Folge (Frankfurt am Main), 49, 22 (1966).
- E. R. Andrew, W. Vennart, G. Bonnard, R. M. Croiset, M. Démarcq and E. Mathieu, Chem. Phys. Letters, 43, 317 (1976).
- 7. A. Chapput, B. Roussel, F. Wallart and M. Démarcq, unpublished results.
- 8. Wang Zongming, Wang Xieqing and Lu Wanzhen, Proceedings VIIth International Conference on Raman Spectroscopy, Ottawa 1980, p. 132.
- 9. M. Meisel and H. Grunze, Z. Anorg. Allg. Chem. 373, 265 (1970).
- 10. C. Brévard and M. Démarcq, to be published in Chem. Phys. Letters.
- 11. H. Vincent and C. Vincent-Forat, Bull. Soc. Chim. Fr., 499 (1973).
- 12. F. M. Faure, M. J. Mitchell and R. W. Bartlett, High Temperature Science, 5, 128 (1973).
- 13. L. Maier and J. R. Van Wazer, J. Amer. Chem. Soc., 84, 3054 (1962).
- 14. R. A. McIvor, G. D. McCarthy and G. A. Grant, Canad. J. Chem., 34, 1819 (1956).
- 15. E. H. Uhing and A. D. F. Toy, French Patent Demande 2.172.223 (1973).
- 16. R. A. Shaw and M. Woods, Phosphorus, 1, 41 (1971).
- 17. J. M. Andrews, J. E. Ferguson and C. J. Wilkins, J. Inorg. Nucl. Chem., 25, 829 (1963).
- 18. K. Motzfeld, H. Kvanda and P. G. Wahlbeck, Acta Chem. Scand. A31, 444 (1977).